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ABSTRACT 

This paper studies the solvability of the functional equation g(x + 0)= 
Af(x)g(x), given an irrational 0 and a step function f mapping R/Z (with 
Lebesgue measure) to the unit circle. Results are applied to find parameterized 
families of representations of non-regular semi-direct product groups and to 
display irregularities in the uniform distribution of the sequence ZO. 

I. Introduction 

In studying an irrational rotation of the circle, whether from the point of view 

of number theory, ergodic theory, or representation theory, one is led repeatedly 

to the following question: Under what conditions on an irrational 0 and a 

function f mapping R/Z to the unitary group U(C"), can the functional 

equation 

g(x + o) = f ( x ) g ( x )  

be solved (with nonzero measurable g). Although in this generality the question 

has proven intractable, work due to H. Furstenberg, W. A. Veech and others has 

shown that by restricting to special classes of f's, partial answers can be found 

which give insights into the above fields. In this paper, we restrict to the case of 

Lebesgue measurability, dimension m = 1, and f a step function. In so doing, we 

obtain results which give new interesting examples in each of the above fields 

and also develop techniques which we hope will be useful in the more general 

study of the question. 

We will need the following terminology. Let X = R/Z be identified with the 

unit interval with addition mod 1. Fix an irrational 0 in X. Given a real valued 

function v on X, we build an additive cocycle v on X × Z by the formula: 
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n - 1  t : x j0, forn 0 
v (x, n) = for n = 0, 

[ - 2 v(x - jo) for n < 0. 
j = l  

Then v satisfies the additive cocycle identity: 

v(x, n)+ v(x + nO, k) = v(x, n + k). 

We call v a coboundary if there is a measurable real valued function w such that 

v(x) = w(x + O)- w(x); we say that vl is cohomologous to v2 if their difference 

is a coboundary. 

If we let f(x)=exp(2rriv(x)), then f maps X to the unit circle, and 

f(x, n) = exp(27riv (x, n)) satisfies the multiplicative cocycle identity: 

f(x, n)f(x + nO, k) = f(x, n + k). 

Thus f is a multiplicative cocycle. It is a coboundary if there is a measurable unit 

circle valued function g such that f (x)  = g(x + O)/g(x); f~ is cohomologous to f2 

if their quotient is a coboundary. A result due to C. Moore and K. Schmidt [10] 

implies that v is an additive coboundary (with respect to Borel measure) if and 

only if exp(27risv) is a multiplicative coboundary (Borel) for every real s. We will 

later see examples of v's which are not additive coboundaries but with 

exp(27risv) a multiplicative coboundary for some real s's. 

Both additive and mutliplicative cocycles which come from step functions are 

useful in answering number theoretic questions about uniform distribution. The 

Kronecker-Weyl theorm states that the multiples of 0 are uniformly distributed 
mod 1 in the sense that 

n I 

lim,~ --nl j~o XI ( j 0 ) =  =/tt (I) 

where I is any interval, X, is its characteristic function, and /z is Lebesgue 

measure. If for t in X, we let v(x)= Xto,,)(x ) -  t, then the Kronecker-Weyl  

theorem says that the corresponding additive cocycle has the property that for 

each x, v(x, n)/n ~ 0 as n --> ~. A natural question to ask is whether the v(x, n)'s 

are bounded in n for each x. This is equivalent to asking whether v is a 

coboundary with a bounded w. H. Kesten 17] and Karl Petersen [11] showed that 

this is the case if and only if t is a multiple of 0. 

A slightly more subtle question looks for regularity in the sequence 

~'=-~ Xto,,)(x + jO). For example, one might ask whether this sequence is uniformly 

distributed mod q, q > 1 (i.e., as n ~oo,  does it tend toward being equally 
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proportioned among the congruence classes mod q). An easy application of the 

ergodic theorem shows that for almost all x this sequence will fail to be 

uniformly distributed mod q, if the function f defined by f(x) = exp(2 7riXio,o/q) is 

a multiplicative coboundary with a g whose integral is nonzero. Exponentiating 

the Petersen result and using the information in Corollary 2.3 of this paper, it is 

easy to produce examples of t of the form kO which have ET=-~ X[0,,)(x +jO) not 

uniformly distributed rood q for some q. Veech [14] and Stewart [13] show that 

in the case of 0 with bounded partial quotients in its continued fraction 

expansion, only t's which are multiples of 0 can give sequences which fail to be 

uniformly distributed mod q for some q. What is surprising is that for 0 with 

unbounded partial quotients, Veech and Stewart produce a class of t's which are 

not multiples of 0 yet such that X]=-~ Xlo.,)(x + ]0) fails to be uniformly distributed 

mod q for some q. In so doing, they find multiplicative coboundaries of the form 

exp(2zriXto.o/q) such that (by the result of Schmidt and Moore) X[o.o is not an 

additive coboundary. In Section 2 we extend these results of Veech and Stewart 

by replacing l/q with an irrational. 

Section 3 contains the major results of this paper. In it we use step functions 

with more than two points of discontinuity to explore further the relationship 

between additive and multiplicative coboundaries and questions of uniform 

distribution. Let v = X[o.,)-X[,.,+,)- Furstenberg, Keynes, and Shapiro [4] show 

that the corresponding additive cocycle, v(x, n), is bounded in n for some x if 

and only if either r or t is a multiple of 0. In Section 3, we explore the more 
complicated behavior of the corresponding multiplicative cocycle. Let s E R, 

and f = exp(21risv), with v asabove.  Theorem 3.3 produces an uncountable 

collection of pairs r and t which are not multiples of 0 and yet for which f is a 

multiplicative coboundary. At first glance this seems not surprising in view of the 

results of Veech and Stewart in the single interval case. However, there are two 

major distinctions: Theorem 3.3 is valid for all 0, not just 0 with bounded partial 

quotients. Also, Theorem 3.3 is valid for all s. This means (by the result of Moore 

and Schmidt) that in this case the additive cocycle v = X[0.,)-Xl,.,+,) is itself an 

additive coboundary. Thus we produce an example of an additive coboundary 

which is bounded in x but which is not the coboundary of a bounded w. In terms 

of uniform distribution, an uncountability argument gives an example of r and t 

such that the corresponding sequence of v(x,n)'s is unbounded yet not 

uniformly distributed mod q for any q. 

Theorem 3.3 is also related to some results of Veech [16] concerning skew 

products. If f maps X into a group G, we define the skew product So.t mapping 

X x G into itself by So.t(x, 3') = (x + O,f(x)y). For G compact and abelian, an 
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application of the Peter-Weyl theorem shows that So.r is ergodic if and only if 

h" ° f  is not a (multiplicative) coboundary for any nontrivial character ~ of G 

[16]. The abelian case of Veech's result is that for G a finite group and 0 with 
bounded partial quotients, So.r is ergodic when f is a step function with rational 

points of discontinuity. Theorem 3.3 shows that the condition that f have 

rational points of discontinuity cannot be removed entirely, even for finite G 

and 0 with bounded partial quotients. The other major result of Section 3, 

Theorem 3.1, extends the abelian case of Veech's result by giving one set of 

conditions under which the requirement of rational points of discontinuity can 
be removed. 

Although historically, the questions raised in this paper have been derived 

from questions in ergodic theory and uniform distribution, the answers found 

here open up applications to the representation theory of non-type I groups as 

well. An explicit construction ([9], [12]) builds representations of non-type I 
groups which have type I normal subgroups, from cocycles; the equivalence of 

the representations corresponds to the cohomology of the cocycles. All 1- 

dimensional cocycles such as the ones studied in this paper give irreducible 

representations by this construction; for higher dimensional cocycles the ir- 

reducibility is not automatic but still can be determined from the cocycle alone. 

Further, by varying the measure class and dimension, this construction gives all 

the irreducible unitary representations of these groups. In many of the interest- 

ing examples, (e.g. the Mautner group, the discrete Heisenberg group), the 

cocycles which occur are cocycles of an irrational rotation. Many other cases can 
be reduced to the irrational rotation case using general theory (see [2]). Thus an 

understanding of cocycles of an irrational rotation would reveal the representa- 
tion theory of large class of groups previously thought to be inaccessible. 

The results mentioned above given some progress in this direction. One of the 
consequences of Theorem 3.1 is to give a complete description of the cohomol- 

ogy of two point step functions in the case of 0 with bounded partial quotients. 
This gives an uncountable parametrized family of cocycles which in turn give a 

family of representations of the Mautner group. In [1], the results of this paper 
are used as well to extend the known families of representations [2], [6] which 

were based on exponential functions and higher dimensional cocycles containing 

them. There is hope that these richer families of representations can be used to 

explore questions like mutually singular Plancherel measures. In addition they 

reveal a previously unknown dependence of the representation theory of these 

groups on the continued fraction expansion of the irrational 0 from which they 
are constructed [1]. 
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I am grateful to L. Baggett and A. Ramsay for many useful suggestions and 

comments. 

2. Step functions with two points of discontinuity 

When there is no ambiguity we think of arbitrary real numbers as elements of 

X by identifying them with their congruence class rood 1. When more care is 

needed we use the following notation: 

Ix] = the greatest integer in x; 

]Ix[]= m i n { l j - x ] : j  EZ};  

{x}=x -Ix]; 
_ = + ~ =  x x minus the closest integer to x (with j ~ ½). 

Finally, for x in X or R, define e ( x ) =  exp(2~rix). 

Let t and s ~ X. We begin with the question of which functions of the form 

f,.~ = e(sX[l_,.o ) are multiplicative coboundaries (since translates of coboundaries 

are coboundaries, we arbitrarily fix the location of the interval). We study this by 

asking the slightly more general question of which f,.s's are multiples of 

coboundaries. That is, we look for the existence of Lebesgue measurable 

functions g and constants A, with I g I --- 1 and I A [ = 1 such that 

(1) g(x  + o) = Af,.s (x)g(x). 

Theorem 2.2, its corollary and Theorem 2.5 exploit some limited continuity 
among coboundaries to produce solutions to (1); Theorems 2.4 and 2.6 are 

nonexistence results first proved by W. A. Veech. Taken together these 
theorems give an almost complete answer to the question of when (1) can be 

solved. 
This answer involves number theoretic relationships between 0, t, and s which 

are expressed in terms of the continued fraction expansion of 0. We give an 
outline of the facts we will need; for more detail see [5] or [8]. Let 0 have 

continued fraction expansion [at, a2,.. .].  Then the ai are called the partial 

quotients of 0; [al, a2 . . . . .  ak] = m~/nk (in lowest terms) are called the con- 

vergents; the nk are called the denominators. The convergents give the best 

rational approximations to 0 relative to the size of denominator; the de- 

nominators tell which multiples of 0 best approximate integers. How well they 

approximate integers is limited relative to the rate of growth of the de- 

nominators. The following Lemma makes this precise and gives some helpful 

relationships between the partial quotients and the convergents: 

LEMMA 2.1. (i) II nkO II = min{[ljO II:0 < j < n~+l,j ~ Z}. 
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(ii) (a) 1/(nk (n~ + nk +l)) < ]0 -mk/nk  ] < 1/(nknk .l) and thus 

(b) < nk+l II II < 1. 
(iii) mk=akmk_l+mk_2; nk=aknk-~+nk_2, for k>=2. (We take mo=0, 

m, = 1, no = 1, n, = a,.) 

(iv) a~+,ll n~O II ÷ II n~+,O II -- II n~-~O II- 

PROOF. See [5] or [8]. 

If 0 has its a~'s bounded we say 0 has bounded partial quotients. For such 0, 

(iii) implies that nk/n~.~ is bounded away from 0, so that the limitation on how 

fast integers can be approximated given in (iib) can be strengthened. For 0 with 

bounded partial quotients, we have that the sequence of nk II nkO II is bounded 

away from O, and also that the sequence nk-ko[lnkO II is bounded away from 0 for 

any fixed ko. We will see that this fact makes the question of the solvability of (1) 

have quite different answers depending on whether 0 has bounded partial 

quotients. 

We are ready now for the main results of this section. 

THEOREM 2.2. For any s E X the function fe, s is a multiple of a coboundary, 
with solution to (1) given by A = e ( -  sO) and g(x) = e ( -  sx). 

PROOF. Clear by substitution. (Recall that arithmetic in the argument of g is 
mod 1.) 

REMARK. This solution is the key to the existence results of this paper; thus 

we include some remarks about its discovery. The solution was found by 
replacing 0 with a sequence of rational approximations. The equation 

g(x +plq)  = Afp/,~(x)g(x) has a solution if A q= e ( - sp ) .  It can be built by 
partitioning X into q pieces, taking g(x)= 1 on the first subinterval, and then 

using the functional equation to define it on the (p + 1)st (mod q) subinterval, 

then the (2p + 1)st (mod q), etc. The condition on A insures that this function 
will match up when it gets back to the first subinterval. The value of this function 

on the jth subinterval will be A he (sk) where h is the number of steps required to 

get to the jth subinterval in the above procedure and k is the number of those 
steps, excluding the final one, that land in one of the last p subintervals. We see 

that h and j satisfy hp + 1 = kq +j. Taking A = e ( -  sp/q), the resulting g has 

the value e ( - s ( j -  1)/q) on the jth subinterval. As p/q ~ O, these solutions 

approach the solution for 0 given in the statement of the theorem. 

Since similar solutions are easy to find for any f under rational rotations, this 

procedure could have wide application. However, the solutions for p/q usually 
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fail to converge as p/q  ---> O. This result is a streak of continuity in an essentially 

discontinuous field (as are most of the existence results in this paper). Much 

could be gained by a more general understanding of where continuity is likely to 

o c c u r .  

We use the fact that translates of solutions to the functional equation for f give 

solutions for the translate of f ;  and that products of solutions for fl and solutions 

for f2 give solutions for flf2 to obtain the following: 

COROLLARY 2.3. For any s E X and k E Z, f~o,s is a multiple of a coboundary, 

with solution to (1) given by A = e ( -  s { kO } ) and g ( x ) = e ( -  skx )Pk (x), where Pk 

is the following step function: 

For k > O, Pk has discontinuities at O, - O, . . . .  - (k - 1)0, and takes on the 

values e(s/),  / = 0, 1 . . . .  , k - 1 in that order as x goes from 0 to 1. 

For k < O, P~ has discontinuities at O, O, . . . .  - k O ,  and takes on the values 

e ( -  sj), j = O, 1 . . . . .  - k in that order as x goes from 0 to 1. 

PROOF. Given a function f on X and a y E X, let Yf be defined by 

'f(x) = f(x + y). 

Using this notation, for k > 0, 

fkO.s = e ( -  s[kO])(fo.s)(°fo,,)(2°fo.,). . . ((k-1)Ofois). 

Thus if go.,, Ao: is the solution for t = 0 given in Theorem 2.2, then 

g = (go, s ) (°go, s )2°go.,"" (~k-1)Ogo," ), 

and A = e(s[kO])(Ao:) k give a solution for t = kO (rood 1). The corollary for 
k > 0 follows by noting that 

e ( -  s(x  + {j0})) for x E [0, 1 - {j0}) 

' °g°"(x)= e ( - s ( x + { j O } - l ) )  for x E [1-{j0},  1) 

and that g can be replaced by any multiple of itself and still give a solution. (We 

replace g by e(sg~2~{jO})g.) To get the result for k < 0 ,  write fko.s = 

e(s)(~°f_~o_,). Thus Ak0,s = e(-S)(h-k0.-s) ,  and gko, s = k° g-~o,-s. 

REMARg. W . A .  Veech [14] proved the special case of this corollary where 

s = ~ and t is an even multiple of 0. M. Stewart [13] extended Veech's result to 

the special case where s is rational with denominator q and t is a multiple of qO. 

Karl Petersen [11] has a result which proves the existence of the solutions given 
in the corollary, but which says nothing about the form of the g. 
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We observe that if g,/~ is a solution to (1) then g ' ,A'  is also, where 

g'(x) = g(x)e(/x)  and A '=  Ae(jO), j E Z. (In fact, then all solutions must be of 

this form since all eigenvalues of the irrational rotation are of the form e(j0).) 

Thus we see that fko.~ is an actual coboundary (rather than just a multiple) if 

s{kO}= m +nO for some integers m and n. So for example, [ko, p/q is a 

coboundary if both k and [kO] are divisible by q. For simple examples, such as 

when [kO] = O, it is easy to see that the corresponding g~ = P~ has nonzero 

integral. Thus, we have examples of sequences E~=~ Xto.ko)(X + jO) which are not 

uniformly distributed mod q. 

With irrational s, we have examples of coboundaries such as fo.~/o. Again 

for simple examples such as this we easily see that f gd/z~ 0. Analogously 

to the rational case, we thus produce examples of sequences of the form 

s ET=~ Xi0,,)(x + jO) which are not uniformly distributed mod 1. 

The next result, which was first proved by W. A. Veech [15], shows that when 

0 has bounded partial quotients, (1) has no measurable solution except under the 

conditions of the corollary. Thus, in the bounded partial quotients case, we have 

found all the coboundaries (and multiples) among the fi.s's, and thus all possible 

examples of failure of uniform distribution. The proof given here is a simplica- 

tion of the proof in [15], but it uses essentially the same technique. As we will use 

this technique in all the nonexistence proofs in this paper, we first outline its 

basic principles. 

Given an f mapping X to the unit circle and an integer n > 0, we define the 

function f(") by 

f(")(x) = f ( x ) f ( x  + O)f (x  + 20).-. f ( x  + (n - 1)0). 

(This is just the cocycle f(x, n) defined in the introduction.) If f is a multiple of a 

coboundary then 

f(")(x) = ;~ "g(x + nO)/g(x)  

for some measurable g and constant A, [A[= 1. Thus if we let 

c (" ) :  f f '")(x)d~(x), 

we have by the continuity of translation in L 2 that 

(2) lim [c¢")[ = 1. 
I[.oIHO 

But then ( f ( " ) - c ( " ) )~O in L 2 as IIno II-  o (since the Fourier series map is an 
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isometry). So if we fix an e and let 

A(, ")= {x : Ifc")(x) - c~") I < e}, 

we have that for each e > O, 

(3) lim /~ (A ?)) = 1. 
II~0ll-,o 

Recall that if [ has discontinuities at 6, t2 . . . . .  t,, then ]'t") has discontinuities at 

t~ - jO  for 1 _-< i _-< m and 0=<j < n. If the value of [ jumps by e(s~) at t~ then the 

value of f~")jumps by e(s~) at each of the points t~ - jO  (unless this point happens 

also to be a t v - j 'O;  in this case the total jump is the sum of the jumps 

contributed by the points which coincide). We think of m columns of discon- 

tinuities, each with n points in it. If t, - tr = pO, then the ith and i'th columns 

overlap with p points in each column that don't coincide with points in the other 

column. The intervals between discontinuities in [(") can be thought of as 

pairings of these points of discontinuity. To apply the remarks above, we take e 

to be ½ the minimum absolute value of the ratios of successive values of [, so that 

no two adjacent intervals between discontinuities of f~") can both belong to A ~"). 

Then if we let 6 t") be the length of the smallest interval between discontinuities 

of ft") and d t") be the number of discontinuities, (3) shows that 

(4) lim dt")6 c") = O. 
I1',o1~o 

We use estimates and counting arguments on the possible pairings to show that 

for certain f ' s  this cannot happen. 

Now we are ready to state the theorem: 

THEOREM 2.4. I f  0 has bounded partial quotients and t ~  ZO, then f,.s is not a 

multiple o[ a coboundary [or any nonzero s. 

PROOF. Let 0 have bounded partial quotients, with convergents mk/nk ; and 

let tf~ZO. Suppose there is a measurable g and a A such that g(x + 0 ) =  

Af,.s(x)g(x). Then we have as in (2) that 

f I 1, as --->~. k 

With e =½[1-e ( s ) l ,  we have by (3) that l i m / x ( A ~ ) ) = l ,  and by (4) that 

limk~® d("~)6 ("d = O. 
re(nk) Now, the 2nk points of discontinuity of s,.s are distinct since tZ  ZO, so that 
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d ¢"~)= 2nk. Thus we have 

(5) lim nk6 ~ ) =  O. 
k ~  

¢("k) 
The intervals of constant value of ,,,~ are all of length Ilpo~ll or l i t -po l l  with 

p ~ z ,  Ipl  < n~. Recall that by Lemma 2.1, 

min lip0 II = II n~-,0 II, 
O<p<n k 

and n~ [I nk-~O 11 is bounded away from 0. Thus (5)implies that 8'"~' is eventually of 

the form lit - po II- 
Let p,~ be such that 

Then 

~"~' = l i t -  p.koll = min l i t -  poll. Ipl<,,k 

lim nk lit - p . ~ 0  II - o 
k ~  

and also 

and thus 

n~ l i t -  p..,o II < n~+,llt- p . . . .  o11~ o as k ~ o o ,  

l imnki Ip ,~0-p  .... oIl=O. 

But since Ip,k--p,~+,l<nk+nk÷l<=nk+2, we have by Lemma 2.1 that 
P > IIP,kO-P .... 011=lln~+2011, unless P,k=P,~+I. Therefore since nklln~+20I[ is 

bounded away from 0, p,~ is eventually constant. Then t is a multiple of 0, which 

contradicts our assumption. 
The next two theorems show that conditions determining the solvability of (1) 

are more complicated when 0 has unbounded partial quotients. They contain the 

bounded partial quotient results as special cases. 

THEOREM 2.5. Let t = Y-~=o bknkO (mod 1), where bk E Z. Suppose 

YZ=olb~ [n~ IIn~011< o~ and also Y~=olllb~s I1< ~. Then f,,, is a multiple of a co- 

boundary. 

PROOF. The condition that ET=o t b~ I n~ II n~O II < ~ implies that 

lim~b~n~lln~OIl=O, and thus by Lemma 2.1 that Ib~l< a~÷, for k sufficiently 
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large. Choose an integer ko> 0 such that ]bkJ< a~+~ for k >_-ko. Define t~ = 

E~=o b~nfl, and for k => ko, let 

fk 
if bknkO ~- [0, ~), 

if bknkO E [½, 1). 

Then f,,, = (f%_,,,) II~ =ko f~, with the product converging in L ~. Thus it will suffice 

to find solutions Ak, g~ for fk such that 1-l~=ko gk converges in L ~. Since I gk I -- 1, we 

can show {1-I~"=kog~}7.=~o is Cauchy by showing that Y  = olll-g  This is 
possible with a careful choice of gk. Using the remark following Corollary 2.3 

(with j = nk times the closest integer to bks), and ignoring translation (since 

I I l -g~  II, is translation invariant), we can alter the solution for fk given in 

Corollary 2.3 and take gk (x) = e ( - nkbksx)Pb~,~ (X). 
Since the solution for f-b~,~0,, is just a translate of the conjugate of the solution 

for fbk,~e,~, we can assume without loss of generality that bk is positive. Recall that 

Pb~.~ has discontinuities at 0, - 0 . . . . .  - (bkn~ - 1)0. We will need some informa- 

tion about how these points fall in the unit interval. Let the points 0, - 0 , . . . ,  

- (n~ - 1)0 be ordered from 0 to 1 by 0 = joO < j~ 0 < - . .  < j,~_, 0 < 1. Call these 

the primary points. The next multiple, -n~O, will be a distance 11 nkO II from 0. 

Without loss of generality, suppose it is to the left of 0, that is in [½, 1). As we 

continue to mark off negative multiples of 0 up through - (2nk - 1)0 we will get 
points link0 H to the left of each of the primary points. Call these the secondary 

points. Since mino<j<,k IIjO II > II II, these two sets of points will interlace. If 
bk > 2, continue to mark off the multiples from - 2nkO through - (3n~ - 1)0 to 

get points II II to the left of each of the secondary points, etc., until we have 
marked off the bk-ary points. Since (by Lemma 2.1) 

min IIjo Il = ll o Il > ll Il >= b lln 011, 
0 < j < n  k 

the bk sets of points will interlace. Thus the distance between discontinuities of 

Pbk., have the following repeating pattern (starting at 0): one of unknown length 

followed by (b~-  1) distances of length [InkO II- 

Now we are ready to show E~=ko[[ 1 -  gk I[1 < oo. Because E~=o[ bk Ink link011 < ~, 
we can change the value of gk on the (b~ - 1)nk pieces of length II II without 

affecting the convergence of Y 7= oltl II,. Thus we can replace P~k,k by a step 
function prO) which has discontinuities only at 0 = joO < jlO < . . .  < j,k_~O < 1 
and which takes on the value e(b~si) on [j~O,j~+lO). Now to make the estimates 

simpler we would like to replace P~,~ with a step function P~.; ' )  which takes on 
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the same values in the same order but has its discontinuities at 0, 1/nk . . . . .  

(nk -1)/nk.  For i between 0 and nk - 1 ,  define -b~,~°(~ to have discontinuities at 

O, 1/nk,...,i/nk,]~+~O . . . . .  1"~10; and take on the values e(mbks), m =  
O, 1 , . . . , n k -  1 in that order as x goes from 0 to 1. Then 

~= -- ~= (i-1) D(i) " 
II ~(O)rbknk lbknk]~(nk- 1)11111 ~-'~ E Pbknk--lbknk[[I 

k o k o i=1 

n k 1 

=k~=o [1-e(bks)[ ~ Ili/nk--J'OII" 

Now, I1 - e (bks)'l = 21 sin(~r II bks II)l < 2 ~ II bks II. Also, by noting that the order of 

multiples of mk/nk is the same as the order of multiples of 0 in [0, 1) (since 

Iljo - jm~ [ nk II < 1/ nk+ ~ while IIj~O - j~+ ~ 0 II >~ IInk ~ 0 II > 1/n~+~), we see that 

nk--1 nk--I 
~, [[i/nk-/,Ol[= E IIJ, mk/nk-j,O[I 
i=1 i=1 

nk--1 
<= ~ ji/nknk+, 

i=1 

< nk/2nk+~ 

<1 .  

Thus 

__• _(0) D(nk-1) l  I k ~  0 
k o = 

and so we may replace o(o~ with <°~-1~ " ~tbk.k Pbk.k w~thout affecting the convergence of the 

:~Z=~o II1 - g~ Ill, 
We complete the proof by showing the convergence of Y~L~,,II1- ggll, where 

xr,(nk l)z X g'k(x) = e ( -  nkbksx )rb~.~ tX ). 

= ~ o ,--Zo ~,,.k 1 - e ( -  ,,~b~sx)P';/.f(x)Jd~__ (x) 

"k-1 ~('+w"~]l e ( -  n~bksx + b~si)l d/x(x) 
~ k 0 i~= Jiln k 

_~-k- '  ~,,+i,,,~ [1 - e ( -  nkbkSX + bksi)ld~(x) 
k 0 = Jilnk 

~= n k 1 ~(i+l)/n k 
= 2 k o ~ S//-~ I sin 7r (bksi~ - __bksn~x) I dl z (x) 
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nk 1 t . ( i+l ) /nk  

= 2 =~ ~ ~ sin 7r([Ibks[[i--I[bks[[nkx)dlz(x ) 
k o = J i ln~  

n k - !  

=2 2 (1-cos rllb sll)/( n llb sll) 
k = k ~  i = 0  

----2~" k~ IIb~s I1< ~. 
o 

REMARK, W . A .  Veech [14] and M. Stewart [13] have the following weaker 

version of the special case of this result where s is rational with denominator q: 

If t = E~=0 bkn 'kqO, where n ;, is a denominator for qO ; and if Y,~ =o I bk In ~[[ n ;,0 I[ < 

% and further  g=011b sll< , then (1) has a solution. This differs from the 

special case of our result in writing t in terms of qO instead of 0. It can be 

deduced from the special case of Theorem 2.5 by noting that if f is a multiple of a 

coboundary for 0, then it is a multiple of a coboundary for O/q (rewrite the 

functional equation g(x + 0) = ,~f(x)g(x) as 

g(x + O/q)g(x + 20 /q) .  . . g(x + O) 

= ,~f(x)g(x)g(x + O/q ) . . .  g(x + (q - 1)O/q)). 

The following theorem of Veech and Stewart is the corresponding nonexis- 

tence result for 0 with unbounded partial quotients. Note that unlike the 

bounded partial quotients result, it does not exclude all t 's except those in the 

existence theorem. 

THEOREM 2.6. If  [,.s is a multiple of a coboundary, then t can be written in the 
form t = Y~=o b~nkO, bk E Z, where 

lim bkn~ [[ nkO II = 0 and lim II bks II = 0. 
k ~  k ~  

PROOF. See [13], [14]. 

3. Arbitrary step functions 

Any step function with m points of discontinuity is a multiple of a translate of 

one which has a discontinuity at 0 and takes on 1 as its first value. Such a function 

can be written uniquely as a product of m -  1 functions of the form f,,.~ as 

follows: Let f have discontinuities at 0 < 1 - tl < 1 - t2 < • • • < 1 - t,,-1; and take 

on the values 1, e(sl), e(s2), . . . ,  e(s,,-1) in that order from 0 to 1. Then 

f = i f , . _ ,  . . . . .  - . . . .  ). 
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This representation will enable us to use the results and techniques of the last 

section to determine some conditions governing which step functions are 

multiples of coboundaries. 

We have already seen that multiples of coboundaries are preserved under 

products and translations, so we can easily use the positive results of Section 2 to 

build step functions with m points of discontinuity which are multiples of 

coboundaries. For 0 with bounded partial quotients, all such functions will have 

the property that at least one of the distances between discontinuities is a 

multiple of 0 (rood 1). One could hope that these are the only step functions f 

with solutions. We shall see later that this is not true in general; however, the 

following theorem gives a set of conditions under which this simplest possible 

situation does hold. 

THEOREM 3.1. Let f be a step function with points of discontinuity at to < t~ < 

• " < t,,_j and with 

f(x) = { 
"y~ f o r x E [ t ~ _ ~ , t ~ ) , l ~ i < m ,  

7m for x E [t,,_~, 1) U [0, to). 

Suppose at least one of the distances t~ - t~, ~ ZO, and further that no product of mo 

distinct ratios of the form ~/~+i/~, is 1 for any mo< m. Then for 0 with bounded 

partial quotients, f is not a multiple of a coboundary. 

PROOF. Without loss of generality, let to = O, and replace t, by 1 - t i .  Let 

3'~+1/3', = e(s~), s~ ~ X. There is a solution for f if and only if there is one for f /y l .  

Thus it will suffice to prove the theorem for functions of the form 

f = f  ..... f ..... . . . f  . . . . . . . .  

under the condition that at least one of the t, ~ ZO and that no partial sum of the 

si's, YT-'_'~ s~j, mo-_< m -  1, is an integer. 

Suppose there is a solution to g(x + O)= Af(x)g(x) .  As before, we will study 

the effects the existence of this solution has on the behavior of the sequence of 

f~"~). We will replace this sequence by a succession of other sequences in such a 

way as to preserve certain essential aspects of this behavior, and eventually reach 

a contradiction. 

Accordingly, we rename the sequence f~"~) = fro.k). Recall that ft0.~) has jump 

discontinuities of size e (s~) at the points - t, - pO for 0 <= p < nk where 0 _-< i < 

m, and where we take to = 0 and So = - E~Z] j s~. If some of the distances t~ - t~, are 

in ZO, then some of these discontinuities may coincide; in that case the total 
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jump at that point is the product of the appropriate e(s~)'s. For each i, 0 -<_ i < m, 

we define 

t ( Y  )= ti 

for all k. Now we describe how to obtain t(/+~'k) from t(/'k~ If 6 (j'k) = the minimum 

distance between discontinuities of if.k)is in ZO, then let 

t(/+Lk)= tl j'k) for all i. 

If not, then 

~q,~) ( j . k )  ~/.t() 

(j,k ) ( j .k ) 
where p(j.k) E Z and either t~, or t~ 2 is not in ZO. Without loss of generality, say 
(s,k) 

t~, ~ ZO. Let 

~ (],k )" (],k ) (/,k ) (j.k ) 0 = tq - t~ 2 - p  . 

In this case define 

(j,k) (/,k) 
t(ff ) - 6  (~'k)* if t~ -t~, CZO 

(j+l.k) 
t i  = 

(j ,k ) 
t~ otherwise. 

We define fo+l.k) to have jump discontinuities of size e(s~) at - t~/+~'k)-  pO for 

0 _-< p < nk where 0 _-< i < m. Again it is possible that two or more discontinuities 

will coincide; in that case we take the total jump at that point to be the product 

of the appropriate e(s~)'s. 

For a fixed j and k, we think of the t~/"~' as vertices of a graph in which there is 

an edge connecting t(ff ) and t(/k) whenever their difference is a multiple of 0. 

Then for each k, the transition from j--* j + 1 connects at least one additional 

pair of vertices (t~i 'k) and tc~i'k)), until for some jk, 6 ~jk'k) is in ZO, and the process 

terminates. After at most m - 1 steps, all the vertices would be connected, so for 

each k, jk -<- m - 1. We let jo = max jk. By an elementary graph theory argument 

using the Euler characteristic, the same number of new connections are required 

to connect all the vertices no matter which order the edges are drawn in. 

Therefore we have that no (3, k) graph is connected for j < jo. However, it is 

possible that some or all of the (3'0, k) graphs are connected. 

We will show that for each j < jo the sequence f(j,k) has the following two 

properties: 

(6) Ic 'k)l=lff("k)(x)dg(x)l--)l as k---)~; 
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and if we let d (j'k~ the number of discontinuities of f~,k), d(i,k) = we have that is on 
the order of nk, that is 

t (Jk) .  
(7) a ' /nk 7 z, 0 as k ---) ~. 

We then show that for j = jo, we can find a subsequence {kq}, such that f,,.k ) has 

properties (6) and (7). 

Note that f,,k~ does have these properties: Property (6) follows by (2). The 

condition that no partial sum of the s,'s adds up to an integer implies that the 

only way that discontinuities which coincide can cancel each other out is to have 

m coincide. Since at least one t ~  ZO, f(o,~) has at least two columns of 

discontinuities that do not overlap at all; thus it is impossible for m discon- 

tinuities to coincide. Therefore fro.k) has at least 2nk discontinuities and so 

satisfies (7). 

Now we show that the process for obtaining fcj+l.k) from f~j,k) preserves 

properties (6) and (7) for j + 1 < jo, and for a subsequence of k's, preserves both 

properties for j + 1 = jo. 

Property (6): It will be sufficient to show that 

(8) lim [[f~,k)_ f(j+~,k)H, = O, 

for j + 1 < jo (Property (6) is true even for jo without passing to a subsequence). 

We obtained fcj+~,k) from f(J'~) by moving rn~ points of discontinuity each a 

distance 8 (j'k~, where r < m. Thus by the triangle inequality, we need only show 

that 2rnk6tJ'k)--~O as k--)0% or equivalently that 

(9) lim nk6 (j'k) = O. 

Let a Cj'k) = {x : If(J'k)(x) - cCJ'~) I < minll  - e(E"q '°, s,~)l, m o ~  m - 1}, where the 

minimum is over all partial sums of the s,'s. By hypothesis of the theorem, this 

minimum is not 0. Since f(j.k) satisfies property (6), we have as in (3) that 

l im/z(A u'k)) = 1. 

Since no two adjacent intervals between discontinuities of [o,k) can both belong 

to A ~"'~ (we assume J'O'~) has at least one of its distances between discontinuities 

not in ZO; otherwise f(j+,,k)= fz.k) and (8) is trivial), we thus conclude that 

lim d°"k~6 °'k) = O. 

Since f(/.k) satisfies property (7), this gives (9). 
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Property (7): We have already argued that discontinuities only cancel when 

m coincide and thus that there are at least 2nk discontinuities in f(j+l,k) unless all 

the distances between them are in ZO. We have seen by the graph theory 

argument above that f(s+,,~) cannot have all distances between discontinuities in 

ZO for any k unless j + 1 = jo. Therefore we are done except for the case 

j + 1 = j0. If there is a subsequence {kq} such that not all the distances between 

discontinuities of fOo,k ) are in ZO, we pick this as our subsequence and we are 

done. So suppose there is not. This means that for k sufficiently large, jk = jo, so 

that 6(s'k)~ ZO for any j < jo, and p(S,k)is defined for j < jo. There are 2[p(°'~)[ 
__ t (O ,k )  f(s,,+k) discontinuities of the form .~, - p O  in that do not coincide with any of 

_ t(O, k ) t(O, k ) t(O, k )  the form .~: -qO,  since once the distance between .~, and .~: is set at 

p(°'~)O in fo.k), it remains fixed at that distance for all future j. Thus there are at 

least 2 [p(O.k)[ discontinuities in f °o'k~ that do not cancel out, and so it is sufficient 

to find a subsequence {kq} such that p(O,k) is on the order of nk~. We do this by 

letting k be in {kq} if and only if ]p(O,~)[ > ip<O,~ ~)1. Since 6 (°'~ is the minimum 

distance in f(o,k), this condition insures that t~ "k~ - t} °'k) - p(°'k)O did not occur as a 

distance in f(o,k-~) and thus that Ip(°'k)] > nk-~. Because 0 has bounded partial 

quotients, nk-, is on the order of n~. We need only show that there is an infinite 
• t ( ° ' k )  t O , k )  sequence {kq} such that  [p(O,kq)[ > [p(O,kq 1)[ This is true since .,, - . ,~  ._ ZO. 

Now we have produced a sequence {/%.k ~}~_~ that has properties (6) and (7) 

and has 6 o°'k.) of the form pC~o'~,)O for all q. For q sufficiently large, 

(10) Ip%'~,)l _-< mn~ 

since p~"~q) was obtained from a distance in f by making at most m -  1 

substitutions by multiples of 0 with the size of the multiple bounded by n~. As 

before, property (6) implies that 

and thus by property (7), 

lim dO°'kq)6 ~°'k~) = 0 
q ~ m  

But then, 

lira ~kq~ (jO'kq) = O .  

,im.  ( IIP01J) -- 0, 
q ~  IP q 

which is impossible for 0 with bounded partial quotients by Lemma 2.1. This 

completes the proof of the theorem• 
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If we could remove the condition on ratios of successive values, Theorem 3.1 

would give necessary and sufficient conditions for an arbitrary step function to be 

a multiple of a coboundary (bounded partial quotient case). In the case of step 

functions with two or three points of discontinuity, the ratio condition is always 

satisfied so we do have this complete answer. The two point case just repeats 

results of Section 2. The three point case can be used to give necessary and 

sufficient conditions for : .... to be cohomologous to/,~,s2. Thus it determines the 

equivalence classes among the representations of non-type I groups built from 

these cocycles. 

However it is clear that the ratio condition cannot be removed for functions 

with four or more points of discontinuity. A product of translates of step 

functions with all interval lenths in ZO will not necessarily have all interval 

lengths in ZO. One class of easy examples of this are functions of the form 

f = (fk~,s)('fk~,-,) where k ~ Z, s E X, and r~ ZO. (Note that Theorem 3.1 does 

not apply since e(s) and e ( -  s) occur as ratios of successive values.) As we will 

have use for the solutions for functions of this form later, we make note of them 

in the following Lemma: 

LEMMA 3.2. The :unction :,,k0,, = (fko,,)(':ko,-,) is a coboundary. A solution to 
Jr, -s = - k e f ( - k )  f o r  g(x + O)=[,.~o,,(x)g(x) is given by g = ¢ck~ [or k >O, and by g s,., 

k < 0 .  

PROOF. By Corollary 2.3, :ke,, has solution A =e(-s{kO});  g(x )=  

e ( -  skx)Pk (x). Thus :,,~o., has sotutiort A = e ( -  s{kO})e(s{kO}) = 1; 

g(x ) = ( e ( -  skx ))(e(skx ))(P~ (x ))('P~ (x )) 

= Ix))(P  (x)).  

Recalling the definition of Pk given in Corollary 2.3, we see that for k > 0, this g 

has jump discontinuities of size d(s) at 0, - 0, . . . .  - ( k  - 1 ) 0  and jump discon- 

tinuities of size e( - s) at - r, - r - 0 . . . .  , - r - (k - 1)0. The lemma for k > 0 

follows by noting that multiples of solutions are still solutions. The case k < 0 

then follows by the fact that :-ko, s = e(s)(-k°:ko.-s). 
The examples produced by Corollary 3.2 still have the property that they are 

formed from products of translates of multiples of coboundaries of the form :ko,. 
In particular, they have the property that at least one of their distances between 

(not necessarily adjacent) discontinuities is in ZO., In [16], Veech raised the 

question of whether any step function which is a multiple of a coboundary must 

have at least one of its distances between discontinuities in ZO (bounded partial 
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quotients case). The following theorem shows that the actual situation is much 

more complex, and reminiscent of the unbounded partial quotients results of 

Section 2. 

THEOREM 3.3. Let t = X~=o bknkO and r = Y,~=0 dknkO where I bk l, [dk I < ak+,. 
(As before, the ak's are the partial quotients for 0 and the n~'s are the 
denominators.) Suppose 

~o l bk l (s~ [ djlln~) ]lnkO l[ < oo and k~_o l dk l (j~= l bj l ni) llnkO Il < oo. 

Then the function f,,,., = (f,.,)('f,_,) is a coboundary. 

PROOF. The method is that of the proof of Theorem 2.5. Accordingly, we 

define tk = E~=o bjnfl and r~ = E~=0 dsnfl, and we let 

A = ('~-'f,,~,.~,s). 
Then fr.,.s =IIb,,,0fk with the product converging in L 1. We will produce a 

solution gk to gk(x + O)=fk(x)gk(x), such that IIb~og~ converges in L ~. We 

show convergence by proving ~b~olll  - g~ II, < ~.  
We assume without loss of generality that bk is positive. Using Lemma 3.2 and 

ignoring translation (since I I l -g~  I1~ is independent of translation) we take 
t(bknk) 

g~ = a l  . . . .  where a is a constant, l a I =  1, to be determined later. Now, by the 
triangle inequality, 

~ o  II1 - oq,., II1 = b~o II1 - ~I,, II, + 2 b~o I b~ I n~ d,,,o o 

The second summand is dominated by 

which converges by hypothesis. It remains to show a can be picked so that 

O [ f  rk_l,s 1 ~ • 

Recall that (taking into account cancellations) S,k-,.s¢Cb~"k) has jump discontinuities 

of size e(s) at 0,20,...,rk_l; and jump discontinuities of size e ( - s )  at 

(1 - bknk)O, (2 -- b~nk)O . . . . .  rk-, - bknkO. Since I dj I < aj+~, we have that E~_s~ djn~ < 
nk so that these two types of discontinuities interlace. Thus ¢(bk,~) has an interval J r k - l , S  

of length I bktllnkOll followed by one of unknown length, followed by one of 
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length tb tlln OIt, and so on; with its value on all the pieces of unknown length 
. ~  . F ( b k n k  ) 

the same. Choose a so mat otl, ~ .... is 1 on the intervals of unknown length. Then 

we are done since E~=0 I bk I(E~=o [ds I n,)ll nk0 II converges by hypothesis. 
The hypotheses of Theorem 3.3 will be satisfied when either r or t is so rapidly 

approximable by multiples of 0 as to make [,,s or/,., have a solution by Theorem 

2.5. This is as we would expect. For other r and t, the hypotheses can be roughly 

characterized as requiring that both t and r are rapidly approximable by 

multiples of 0 (though somewhat less so than required by Theorem 2.5), and that 

the sequences of best approximations for t are nicely related to those for r. We 

make this more precise by producing a class of r and t that satisfy these 

hypotheses. Note that if lbk [, [dk[< ak+l we have 

where h = max[/=< k : d j~  0}; and similarly 

where /~={max/ '  =< k : b j#0}.  Thus since nk/nk+2<~, t = X~=obknkO and r = 

X~=o d~nkO will satisfy the hypotheses of Theorem 3.3 whenever [b~ [, [dk [ < ak+l. 

and we have for k sufficiently large that if bk#0 ,  then ds = 0  for, say, 

2k/3 < j < 3k/2. In this case, for nonzero bk (or dk), nj~÷l (or ns~+~) is bounded by 

n2k/3 and so the series in question will be bounded by X~=o (½)(k/6~. Therefore we 

have an uncountable class of examples of Theorem 3.3 coming from sparse 

sequences {bk} and {dk} which mesh sparsely as well. Multiples of 0 cannot have 

representations coming from such sparse sequences unless they are eventually 

identically 0, since then 0 would have a representation coming from an 

eventually sparse sequence. This is impossible since the size of X~=kob~nkO 
ko-I 

cannot be comparable to the size of Y~k~o bknkO if bko = 0 and Ibkl< ak÷l. Thus 

these examples give a negative answer to the question of Veech. 

Now let ro = X~=o b~nkO where bk = 1 if k = 2 ~j for some integer j and bk = 0 

otherwise. Let K C X be defined by K = {t :f,o,,,, is a coboundary for all s}. K is 

uncountable since it includes all t 's of the form t = X~=o dknkO where d~ = 0 if 

k #  22s÷~ for some integer j and dk = 0 or 1 if k = 22j÷~. We would like to produce 

a t in K such that J" g,.,.,dtz is nonzero for all rational s. We follow a technique 

used in [14] in the single interval case. If t~, t2 E K, then t~-t2 is in K with 

solution given by 

g,o.,~-,~.~ = -'~(gro,'~,,g,o,'2,,)" 
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Thus fg,o,,,_~,~d~ = 0  if and only if g,o,,,,s ±g,o,~,s in L2(X, Iz). Since Lz(X ,  t t )  is 

separable,  if we fix s and fix t2 in K, there are only countably  many  tl such that 

g,o,,,,s ± gro,~,~. Thus for each s, there are only countably  many  t 's  in K = K + t2 

such that f gro,,,~dtx ~ O. Thus we have an uncountable  collection of t ' s  such that 

f gro,,,sdlz ~ 0 for any rational s. Each  such t will have the proper ty  that for almost  

Ej=0 Xto,,)(x + j O ) -  Xtrjo+,)(x + jO) is not  uniformly distributed all x, the sequence ,-a 

m o d q  for any q > 1. 

Techniques  similar to those required to prove Theo rem 2.6 can be used to 

p roduce  a partial converse to T h e o r e m  3.3: for s = ½, if fr,,,~ is a multiple of a 

coboundary ,  then r and t have representat ions  r = E~=0 bknkO and t = E~=0 dknkO 

such that 

lim (nk S~=k Ibs 111 n/0 [1)(nk ~ [di[ [InsOH)=O. 

However ,  as in the unbounded  partial quot ients  case in the previous section, a 

class of r and t remain for which it is unde te rmined  whether  fi,,,s is a multiple of a 

coboundary .  
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